Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dimethyl 5,5-dicyano-2-hydroxy-4,6-di-phenylcyclohex-1-ene-1,3-dicarboxylate

In the title molecule, $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$, the cyclohexene ring adopts a half-chair conformation. The molecular structure shows some intra- and intermolecular hydrogen bonds.

Comment

A series of $4 H$-pyran and cyclohexanone derivatives were prepared via a three-component reaction of dimethyl acetonedicarboxylate, aromatic aldehydes and malononitrile.

In the molecule of the title compound, (I), the dihedral angle between the two phenyl rings is $88.8(1)^{\circ}(P A R S T$; Nardelli, 1995). The cyclohexene ring adopts a half-chair conformation. The total puckering amplitude (Cremer \& Pople, 1975) for this ring is $Q_{T}=0.527$ (1) \AA. According to Duax et al. (1976), the ring conformation is half-chair, with a local pseudo-twofold axis passing through the mid-points of the $\mathrm{C} 8-\mathrm{C} 9$ and $\mathrm{C} 11-\mathrm{C} 12$ bonds; it is deformed towards a sofa, with a local pseudo-twofold axis along C9…C12.

(I)

The bond lengths and angles in (I) are comparable to the corresponding values in methyl 6-amino-5-cyano-2-methoxy-carbonylmethyl-4-phenyl-4H-pyran-3-carboxylate (Öztürk et al., 2004). All bond distances and angles are as expected.

An ORTEP plot of (I), with the atom-numbering scheme and 20% probability displacement ellipsoids.

Received 26 February 2004
Accepted 3 March 2004
Online 13 March 2004
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.096$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Figure 2
View of the hydrogen bonding (dashed lines) in (I). [Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, 2-y, 1-z$.]

The crystal structure of (I) is stabilized by intra- and intermolecular hydrogen bonds. The hydrogen-bonding geometry is given in Table 2 and can be seen in Fig. 2.

Experimental

The synthesis of (I) has been reported previously (Heber \& Stoyanov, 2003). IR ($\mathrm{cm}^{-1}, \mathrm{KBr}$): $3029,2963,2840,1738,1661,1640,1492,1436$, 1400,1367, 1308. EIMS m / z (\%): 416 ($M^{+}, 31$), 384 (6), 357 (6), 325 (59), 298 (6), 262 (36), 230 (32), 202 (100), 171 (80), 154 (20), 140 (8), 121 (30), 103 (28), 91 (9), 77 (16), 59 (12), 43 (2). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6}): $\delta 3.62\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.67\left(s, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.69(d, 1 \mathrm{H}, \mathrm{J}=$ $11.8 \mathrm{~Hz}), 4.30(d, 1 \mathrm{H}, J=11.8 \mathrm{~Hz}), 5.07(s, 1 \mathrm{H}), 7.29-7.62(m, 10 \mathrm{H}$ aromatic), $12.30(s, 1 H, O H)$. Analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 69.22, H 4.84, N 6.73%; found: C 69.11, H 4.87, N 6.64%.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=416.42$
Triclinic, $P \overline{1}$
$a=8.8185(10) \AA$
$b=10.9462(13) \AA$
$c=12.8297(14) \AA$
$\alpha=97.514(9){ }^{\circ}$
$\beta=106.713(9)^{\circ}$
$\gamma=109.678(9)^{\circ}$
$V=1080.7(2) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.280 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6497 \\
& \text { reflections } \\
& \theta=1.7-28.4^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Irregular, colorless } \\
& 0.46 \times 0.37 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection
Stoe IPDS-II diffractometer

ω scans

Absorption correction: by integra-
tion (X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.967, T_{\text {max }}=0.985$
9110 measured reflections
4138 independent reflections
2631 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.096$
$S=0.89$
4138 reflections
292 parameters

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C9	$1.339(2)$	O5-C22	$1.321(2)$
O2-C21	$1.223(2)$	O5-C24	$1.453(3)$
O3-C21	$1.326(2)$	N1-C13	$1.134(3)$
O3-C23	$1.450(3)$	N2-C14	$1.137(2)$
O4-C22	$1.194(2)$		
C21-O3-C23	$116.06(14)$	O2-C21-C8	$123.73(15)$
C22-O5-C24	$116.39(15)$	O3-C21-C8	$113.46(14)$
O1-C9-C10	$111.15(13)$	O2-C21-O3	$122.81(16)$
O1-C9-C8	$124.40(15)$	O4-C22-C10	$123.71(16)$
N1-C13-C12	$178.89(19)$	O5-C22-C10	$111.56(14)$
N2-C14-C12	$176.5(2)$	O4-C22-O5	$124.72(16)$
C23-O3-C21-C8	$178.54(14)$	C9-C8-C21-O2	$3.4(2)$
C23-O3-C21-O2	$-0.8(2)$	C7-C8-C21-O3	$3.0(2)$
C24-O5-C22-C10	$-173.06(19)$	C21-C8-C9-O1	$-1.3(2)$
C24-O5-C22-O4	$6.3(3)$	O1-C9-C10-C11	$-168.56(13)$
C8-C7-C12-C14	$69.31(16)$	C9-C10-C22-O5	$9.93(17)$
C8-C7-C12-C13	$-173.62(13)$	C11-C10-C22-O4	$44.4(2)$
C7-C8-C9-O1	$179.81(14)$	C11-C10-C22-O5	$-136.20(16)$
C7-C8-C21-O2	$-177.67(15)$	C10-C11-C12-C14	$-54.71(19)$
C7-C8-C9-C10	$-1.9(2)$	C10-C11-C12-C13	$-173.43(14)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{O} 2$	0.82	1.83	$2.548(2)$	145
C4-H4 O^{i}	0.93	2.54	$3.317(3)$	141
C7-H7 O.O3	$0.96(2)$	$2.42(2)$	$2.720(2)$	$97(1)$
C10-H10 \cdots O2	$0.96(2)$	$2.50(1)$	$3.323(2)$	$144(1)$
C11-H11 \cdots O4	$0.99(2)$	$2.53(2)$	$2.878(2)$	$101(1)$

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, 2-y, 1-z$.
The H atoms attached to atoms $\mathrm{C} 7, \mathrm{C} 10$ and C 11 were clearly visible in a difference electron-density map and were refined freely. A rotating group model was used for the methyl and hydroxy groups, with their H atoms in idealized positions. These and other H atoms positioned geometrically were allowed to ride on the parent atoms, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$ and hydroxy $\mathrm{O}-\mathrm{H}=0.82 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl and hydroxy H atoms, and at $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other C -bound H atoms.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Duax, W. L., Weeks, C. M. \& Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by N. L. Allinger \& E. L. Eliel, pp. 271-383. New York: John Wiley.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

organic papers

Heber, D. \& Stoyanov, E. V. (2003). Synthesis, 2, 227-232
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Öztürk, S., Akkurt, M., Stoyanov, E. V., Büyükgüngör, O. \& Heber, D. (2004) Acta Cryst. E60, o283-o284.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

