Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mehmet Akkurt,^a Sema Öztürk,^a* Edmont Stoyanov,^b Orhan Büyükgüngör^c and Dieter Heber^d

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bFaculty of Pharmacy, Medical University of Sofia, Dunav 2, Sofia 1000, Bulgaria, ^cDepartment of Physics, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ^dPharmaceutical Institute, University of Kiel, Gutenbergstr. 76, D-24118 Kiel, Germany

Correspondence e-mail: ozturk@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.037 wR factor = 0.096Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dimethyl 5,5-dicyano-2-hydroxy-4,6-diphenylcyclohex-1-ene-1,3-dicarboxylate

In the title molecule, $C_{24}H_{20}N_2O_5$, the cyclohexene ring adopts a half-chair conformation. The molecular structure shows some intra- and intermolecular hydrogen bonds.

Received 26 February 2004 Accepted 3 March 2004 Online 13 March 2004

Comment

A series of 4*H*-pyran and cyclohexanone derivatives were prepared *via* a three-component reaction of dimethyl acetonedicarboxylate, aromatic aldehydes and malononitrile.

In the molecule of the title compound, (I), the dihedral angle between the two phenyl rings is 88.8 (1)° (*PARST*; Nardelli, 1995). The cyclohexene ring adopts a half-chair conformation. The total puckering amplitude (Cremer & Pople, 1975) for this ring is $Q_T = 0.527$ (1) Å. According to Duax *et al.* (1976), the ring conformation is half-chair, with a local pseudo-twofold axis passing through the mid-points of the C8–C9 and C11–C12 bonds; it is deformed towards a sofa, with a local pseudo-twofold axis along C9···C12.

The bond lengths and angles in (I) are comparable to the corresponding values in methyl 6-amino-5-cyano-2-methoxy-carbonylmethyl-4-phenyl-4*H*-pyran-3-carboxylate (Öztürk *et al.*, 2004). All bond distances and angles are as expected.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

View of the hydrogen bonding (dashed lines) in (I). [Symmetry codes: (i) -x, 1 - y, -z; (ii) 1 - x, 2 - y, 1 - z.]

The crystal structure of (I) is stabilized by intra- and intermolecular hydrogen bonds. The hydrogen-bonding geometry is given in Table 2 and can be seen in Fig. 2.

Experimental

The synthesis of (I) has been reported previously (Heber & Stoyanov, 2003). IR (cm⁻¹, KBr): 3029, 2963, 2840,1738, 1661, 1640,1492, 1436, 1400,1367, 1308. EIMS *m*/*z* (%): 416 (M^+ , 31), 384 (6), 357 (6), 325 (59), 298 (6), 262 (36), 230 (32), 202 (100), 171 (80), 154 (20), 140 (8), 121 (30), 103 (28), 91 (9), 77 (16), 59 (12), 43 (2). ¹H NMR (300 MHz, DMSO-*d*₆): δ 3.62 (*s*, 3H, OCH₃), 3.67 (*s*, 3H, OCH₃), 3.69 (*d*, 1H, *J* = 11.8 Hz), 4.30 (*d*, 1H, *J* = 11.8 Hz), 5.07 (*s*, 1H), 7.29–7.62 (*m*, 10H aromatic), 12.30 (*s*, 1H, OH). Analysis calculated for C₂₄H₂₀N₂O₅: C 69.22, H 4.84, N 6.73%; found: C 69.11, H 4.87, N 6.64%.

Crystal data

$C_{24}H_{20}N_2O_5$	Z = 2
$M_r = 416.42$	$D_x = 1.280 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 8.8185 (10) Å	Cell parameters from 6497
b = 10.9462 (13) Å	reflections
c = 12.8297 (14) Å	$\theta = 1.7 - 28.4^{\circ}$
$\alpha = 97.514 \ (9)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 106.713 \ (9)^{\circ}$	T = 293 K
$\gamma = 109.678 \ (9)^{\circ}$	Irregular, colorless
$V = 1080.7 (2) \text{ Å}^3$	$0.46 \times 0.37 \times 0.25 \text{ mm}$
Data collection	
Stoe IPDS-II diffractometer	4138 independent reflections

 ω scans Absorption correction: by integration (*X-RED32*; Stoe & Cie, 2002) $T_{\min} = 0.967, T_{\max} = 0.985$ 9110 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.096$ S = 0.894138 reflections 292 parameters 4138 independent reflections 2631 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 26.0^{\circ}$ $h = -10 \rightarrow 10$ $k = -13 \rightarrow 13$ $l = -15 \rightarrow 15$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0552P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.15 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e } \text{Å}^{-3}$

Table	1			
0 1	1			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	321 (2) 153 (3) 134 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	453 (3) 134 (3)
O3-C21 1.326 (2) N1-C13 1.1 O3-C23 1.450 (3) N2-C14 1.1 O4-C22 1.194 (2) 1.1 1.1	34 (3)
O3-C23 1.450 (3) N2-C14 1.1 O4-C22 1.194 (2)	27 (2)
O4-C22 1.194 (2)	137(2)
C21-O3-C23 116.06 (14) O2-C21-C8 123.7	/3 (15)
C22-O5-C24 116.39 (15) O3-C21-C8 113.4	46 (14)
O1-C9-C10 111.15 (13) O2-C21-O3 122.8	31 (16)
O1-C9-C8 124.40 (15) O4-C22-C10 123.7	/1 (16)
N1-C13-C12 178.89 (19) O5-C22-C10 111.5	56 (14)
N2-C14-C12 176.5 (2) O4-C22-O5 124.7	/2 (16)
C23-O3-C21-C8 178.54 (14) C9-C8-C21-O2 3.	4 (2)
$C_{23}-O_{3}-C_{21}-O_{2} -0.8(2)$ $C_{7}-C_{8}-C_{21}-O_{3} 3.$	0(2)
C24-O5-C22-C10 -173.06 (19) C21-C8-C9-O1 -1.	3 (2)
C24-O5-C22-O4 6.3 (3) $O1-C9-C10-C11$ -168.	56 (13)
C8-C7-C12-C14 69.31 (16) C9-C10-C22-O5 99.	93 (17)
C8-C7-C12-C13 -173.62 (13) C11-C10-C22-O4 44.	4 (2)
C7-C8-C9-O1 179.81 (14) C11-C10-C22-O5 -136.	20 (16)
C7-C8-C21-O2 -177.67 (15) C10-C11-C12-C14 -54.	71 (19)
C7-C8-C9-C10 -1.9 (2) $C10-C11-C12-C13$ -173 .	43 (14)

Table 2		
Hydrogen-bonding geometr	y (Å,	°).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O1−H1···O2	0.82	1.83	2.548 (2)	145
$C4-H4\cdots O4^{i}$	0.93	2.54	3.317 (3)	141
C7-H7···O3	0.96(2)	2.42 (2)	2.720 (2)	97 (1)
$C10-H10\cdots O2^{ii}$	0.96(2)	2.50(1)	3.323 (2)	144 (1)
C11−H11···O4	0.99 (2)	2.53 (2)	2.878 (2)	101 (1)

Symmetry codes: (i) -x, 1 - y, -z; (ii) 1 - x, 2 - y, 1 - z.

The H atoms attached to atoms C7, C10 and C11 were clearly visible in a difference electron-density map and were refined freely. A rotating group model was used for the methyl and hydroxy groups, with their H atoms in idealized positions. These and other H atoms positioned geometrically were allowed to ride on the parent atoms, with aromatic C-H = 0.93 Å, methyl C-H = 0.96 Å and hydroxy O-H = 0.82 Å. The $U_{\rm iso}(\rm H)$ values were set at $1.5U_{\rm eq}(\rm C)$ for the methyl and hydroxy H atoms, and at $1.2U_{\rm eq}(\rm C)$ for other C-bound H atoms.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F.279 of the University Research Fund).

References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). *Topics in Stereochemistry*, Vol. 9, edited by N. L. Allinger & E. L. Eliel, pp. 271–383. New York: John Wiley.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Heber, D. & Stoyanov, E. V. (2003). Synthesis, **2**, 227–232. "ardelli, M. (1995). J. Appl. Cryst. **28**, 659.

- Öztürk, S., Akkurt, M., Stoyanov, E. V., Büyükgüngör, O. & Heber, D. (2004). Acta Cryst. E60, o283-o284.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.